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Abstract
The PT symmetric version of the generalized Ginocchio potential, a member
of the general exactly solvable Natanzon potential class, is analysed and its
properties are compared with those of PT symmetric potentials from the more
restricted shape-invariant class. It is found that the PT symmetric generalized
Ginocchio potential has a number of properties in common with the latter
potentials: it can be generated by an imaginary coordinate shift x → x + iε, its
states are characterized by the quasi-parity quantum number, the spontaneous
breakdown of PT symmetry occurs at the same time for all the energy levels
and it has two supersymmetric partners which cease to be PT symmetric when
the PT symmetry of the original potential is spontaneously broken.

PACS numbers: 03.65.Ge, 11.30.Er, 11.30.Qc, 11.30.Pb

1. Introduction

Exactly solvable examples played an important role in the understanding of PT symmetric
quantum mechanics and its unusual features. The firstPT symmetric potentials, i.e. potentials
which are invariant under the simultaneous action of the P space and T time reflection
operations, were found numerically [1]. The most surprising result was that these one-
dimensional complex potentials possessed real energy eigenvalues, which however, turned
pairwise into complex conjugated pairs as some potential parameter was tuned. This
mechanism was interpreted as the spontaneous breakdown of PT symmetry, since the
potential remainedPT invariant throughout, but the eigenfunctions associated with the discrete
spectrum lost this property as the spectrum turned complex gradually with the tuning of the
potential parameter. Further examples have been found in numerical [2], semiclassical [3]
and perturbative [4] studies, but a number of quasi-exactly solvable (QES) [5] and exactly
solvable [6–8] PT symmetric potentials have also been identified. These latter potentials
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were analogues of Hermitian exactly solvable potentials with the property that their real and
imaginary components were even and odd functions of the coordinate x, respectively.

More recently, PT symmetric problems have been analysed in terms of pseudo-
Hermiticity [9], and their unusual features have been interpreted in terms of this more general
context. A Hamiltonian is said to be η-pseudo-Hermitian if there exists a linear, invertible,
Hermitian operator for which H † = ηHη−1 holds. It has been shown that for systems with
Hamiltonians of the type H = p2 +V (x)PT symmetry is equivalent to P-pseudo-Hermiticity.
With other choices of η further complexified Hamiltonians can be generated, which might also
have real energy eigenvalues but do not fulfil PT symmetry [10, 11]. Furthermore, with η = 1
η-pseudo-Hermiticity reduces to conventional Hermiticity.

Here we restrict our analysis to PT symmetric problems, and in particular, to exactly
solvable ones. A number of peculiar features of PT symmetric potentials became apparent
only during the analysis of these potentials.

• It has been observed that several exactly solvable PT symmetric potentials possess two
sets of normalizable solutions [6, 10, 12] in the sense that there can be two normalizable
states with the same principal quantum number n. The second set of solutions can appear in
several ways. For potentials which are singular at the origin the problem can be redefined
on various trajectories of the complex x plane such that the integration path avoids
the origin and the solutions remain asymptotically normalizable. (This latter feature is
similar to some numerically solvable PT symmetric problems [1].) A special case of this
scenario is obtained when an imaginary coordinate shift x → x + iε is employed [7]. The
advantage of this scenario is that the discussion of the PT symmetric potential remains
rather similar to that of its Hermitian counterpart, and by suitable and straightforward
modification of the formalism it can also be interpreted as a conventional complex potential
defined on the x-axis. This imaginary coordinate shift can be employed [7] for all the
shape-invariant [13] potentials (e.g. the PT symmetric harmonic oscillator [6] or the
generalized Pöschl–Teller potential [14]) with the exception of the PT symmetric Morse
[15] and Coulomb [16] potentials. The cancellation of the singularity then regularizes
the solution which would be irregular at the origin in the Hermitian setting. A different
mechanism appears for potentials which are not singular in their Hermitian version, such
as the PT symmetric Scarf II potential, which is defined on the full x-axis. In this
case the second set of normalizable solutions originates from states which have complex
eigen-energy in the Hermitian case, but which turn into normalizable states with real
energy when the potential is forced to become PT symmetric and the PT symmetry is
not broken spontaneously [12, 14, 17, 18]. The two sets of solutions are distinguished by
the quasi-parity quantum number [19].

• In the process of generating the spontaneous breakdown of PT symmetry by tuning the
potential parameters it was found that the pairwise merging of the energy eigenvalues and
their re-emergence as complex conjugated pairs occurs at the same value of the potential
parameter [17, 20]. In other words, the spontaneous breakdown of PT symmetry is
realized suddenly in the case of shape-invariant potentials, as opposed to a gradual process
observed in the case of numerical examples [1, 21].

• For certain exactly solvable (and shape-invariant) examples, such as the PT symmetric
harmonic oscillator [22] and the Scarf II potential [23], it was found that there are two
‘fermionic’ SUSY partners of the original ‘bosonic’ potential, and they are distinguished
by the quasi-parity quantum number carried by the ‘bosonic’ bound states. (In the latter
case this has also been found in other realizations of SUSYQM [24].) This doubling of
the partner potentials is an obvious consequence of the fact that there are two nodeless
normalizable solutions corresponding to the ‘ground state’ in the two segments of the
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spectrum with quasi-parity q = +1 and −1. Furthermore, it was also established that the
‘fermionic’ partner potentials are PT symmetric themselves too, in the case where the
‘bosonic’ potential has unbroken PT symmetry, while they cease to be PT symmetric if
the PT symmetry of the ‘bosonic’ potential is spontaneously broken.

The peculiar features mentioned above have been observed until now for the PT
symmetric version of shape-invariant potentials, while potentials beyond this class often
behaved in a different way. This naturally raises the question whether these features also
characterize non-shape-invariant, but exactly solvable examples. Natural candidates for this
analysis are Natanzon-class potentials [25] which have the property that their bound-state
solutions are written in terms of a single hypergeometric or confluent hypergeometric function.
This potential class depends on six parameters, but it is prohibitively complicated in its general
form, so its subclasses with two to four parameters have been analysed in detail until now
[26–31].

Perhaps the most well-known member of the Natanzon class is the Ginocchio potential,
which has a one-dimensional version defined on the x-axis [26] and a radial one, which has
an r−2-like singularity at the origin [27]. An important feature of this potential is that for a
special choice of a potential parameter it reduces to a shape-invariant potential, namely to the
Pöschl–Teller hole (in one dimension) and to the generalized Pöschl–Teller potential (in the
radial case). The one-dimensional version of the Ginocchio potential has been analysed in
an algebraic framework, and an su(1,1) algebra has been associated with it [32], the discrete
non-unitary irreducible representations of which correspond to resonances in the transmission
coefficients. (These states have been identified as quasi-bound states in an independent study
[33].) Furthermore, it was also shown that this algebra reduces in two different shape-
invariant limits to an su(1,1) potential algebra and an su(2) spectrum generating algebra [34].
The phase-equivalent supersymmetric partners of the generalized Ginocchio potential have
also been derived in a completely analytic form [35].

Although the generalized Ginocchio potential is an ‘implicit’ potential, i.e. the z(r)

function which is used to transform the Schrödinger equation into the differential equation
of the hypergeometric function F(a, b; c; z) is known only in an implicit form as r(z),
nevertheless, similarly to a number of other ‘implicit’ potentials [29], this does not restrict the
applicability of the formulae, because V (r) and the wavefunctions can be determined to any
desired accuracy, and all the calculations involving these quantities (matrix elements, etc) can
be evaluated analytically [35]. Furthermore, we shall see that the imaginary coordinate shift
which is essential to impose PT symmetry on the generalized Ginocchio potential can also
be implemented without complications.

We note that a Natanzon-class potential, the so-called DKV potential, has already been
analysed in the PT symmetric setting by the point canonical transformation of a shape-
invariant potential [36], but it was found that it has to be defined on a curved integration path.
Nevertheless, it also showed similarities with PT symmetric shape-invariant potentials, as its
spectrum was also richer than that of its Hermitian counterpart.

In section 2 we present the Hermitian version of the generalized Ginocchio potential for
reference, and in section 3 we construct its PT symmetric version. Section 4 deals with
the supersymmetric aspects of this potential, while in section 5 a summary of the results is
presented.

2. The generalized Ginocchio potential

The first version of the Ginocchio potential was introduced as a one-dimensional quantum-
mechanical problem which is symmetric with respect to the x → −x transformation [26].
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Later it was generalized to a radial problem [27], which also contains an r−2-like singular
term at the origin. (This latter version of the potential also allows a particular functional form
of an effective mass, but it can be reduced to a constant value by setting one of the parameters
(a) to zero.) Following the notation of [35] we define the generalized Ginocchio potential as

V (r) = −γ 4(s(s + 1) + 1 − γ 2)

γ 2 + sinh2 u
+ γ 4λ(λ − 1)

coth2 u

γ 2 + sinh2 u

− 3γ 4(γ 2 − 1)(3γ 2 − 1)

4(γ 2 + sinh2 u)2
+

5γ 6(γ 2 − 1)2

4(γ 2 + sinh2 u)3
(1)

where we changed the notation of [27] to make it more suitable for our purposes. This form can
be obtained from the original formulae by setting a = 0, αl = λ − 1

2 , νl = s, βnl = µ, λ = γ

and y = sinh u(γ 2 + sinh2 u)−
1
2 .

The (generalized) Ginocchio potential is an example for ‘implicit’ potentials, because it
is expressed in terms of a function u(r) which is known only in the implicit r(u) form:

r = 1

γ 2
[tanh−1((γ 2 + sinh2 u)−

1
2 sinh u)

+ (γ 2 − 1)
1
2 tan−1((γ 2 − 1)

1
2 (γ 2 + sinh2 u)−

1
2 sinh u)]. (2)

r can take values from the positive half-axis, which is mapped by the monotonically increasing
implicit u(r) function onto itself. This function is, actually, the solution of an ordinary
first-order differential equation

du

dr
= γ 2 cosh u

(γ 2 + sinh2 u)
1
2

(3)

defining a variable transformation connecting the Schrödinger equation with the differential
equation of the Jacobi (and Gegenbauer) polynomials [37]. It can be seen from equations (2)
and (3) that u(r) behaves approximately as γ r near the origin, and as γ 2r for large values of r.
In the γ → 1 limit u becomes identical with r, and (1) reduces to the generalized Pöschl–Teller
potential.

Bound states are located at

En = −γ 4µ2
n (4)

where n varies from 0 to nmax defined below and

µn = 1

γ 2


−

(
2n + λ +

1

2

)
+

[(
2n + λ +

1

2

)2

(1 − γ 2) + γ 2

(
s +

1

2

)2
] 1

2


 . (5)

All the terms in (1) are finite at the origin, with the exception of the last one, which shows a
r−2-like singularity there, and can be considered either as an approximation of the centrifugal
term with l = λ − 1 (λ integer), or as a part of a singular potential with arbitrary l �= λ − 1.
Setting λ = 1 or 0 we get the ‘simple’ Ginocchio potential [26] defined on the line.

The bound-state wavefunctions are expressed in terms of Jacobi polynomials

ψn(r) = Nn(γ
2 + sinh2 u)

1
4 (sinh u)λ(cosh u)−µn−λ− 1

2 P
(µn,λ− 1

2 )
n (2 tanh2 u − 1) (6)

which reduce to Gegenbauer polynomials [37] for λ = 1. The normalization is given by

Nn =
[

2γ 2n!	
(
µn + λ + n + 1

2

)
µn

(
µn + λ + 2n + 1

2

)
	(µn + n + 1)	

(
λ + n + 1

2

)(
µnγ 2 + λ + 2n + 1

2

)
] 1

2

. (7)
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Figure 1. The real (left panel) and imaginary (right panel) components of the u(x) function for
γ = 1.75 and ε = 0.3. Note the different vertical scales.

Considering that the r → ∞ asymptotical limit corresponds to u → ∞ (see equation (2)),
the wavefunctions become zero asymptotically if µn > 0 holds. Applying this condition to
equation (5) we find that the number of bound states is set by nmax < 1

2 (s − λ).

3. PT symmetrization of the generalized Ginocchio potential

The first step in the PT symmetrization of the generalized Ginocchio potential is performing
the imaginary coordinate shift which allows its extension to the full x-axis by cancelling the
singularity at the origin. This imaginary coordinate shift is a constant of integration from
(3), and it modifies (2) such that r → x + iε. Here we also switched to x instead of r to
indicate that the original radial potential is extended also to the negative x-axis, following the
standard treatment of PT symmetric potentials. Similarly to the Hermitian case, the variable
transformation is determined by an implicit formula,

x + iε = 1

γ 2
[tanh−1((γ 2 + sinh2 u)−

1
2 sinh u)

+ (γ 2 − 1)
1
2 tan−1((γ 2 − 1)

1
2 (γ 2 + sinh2 u)−

1
2 sinh u)] (8)

however, now u takes on complex values. Figure 1 shows the u(x) function for a particular
value of γ and ε. This function varies smoothly and it is odd under the PT transformation:
PT u(x) = −u(x), i.e. its real and imaginary components are odd and even functions of x,
respectively. Asymptotically the relation u(x) →x→±∞ γ 2(x + iε) holds, while near x = 0
there is a ‘kink’ in both the real and the imaginary component of u(x).

The PT transform of sinh u(x +iε) is −sinh u(x +iε) (which can also be seen analytically
by series expansion), and this also determines the PT transform of the potential (1). In
particular, we may note that it contains sinh u everywhere as sinh2 u (including also the term
with coth2), so (1) is PT symmetric if all the coupling coefficients are real. This restricts γ 2,
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s(s + 1) and λ(λ − 1) to real values. The latter two requirements allow the following values
of s and λ:

s =
{

real when s(s + 1) � − 1
4

− 1
2 + iσ when s(s + 1) � − 1

4

λ =
{

real when λ(λ − 1) � − 1
4

1
2 + il when λ(λ − 1) � − 1

4

.

(9)

We are going to discuss these possibilities later.
Let us now analyse the two independent solutions of the generalized Ginocchio potential,

written in the form of hypergeometric functions. From among the possible linear combinations
we chose the ones which have different behaviour at the origin in the ε → 0 limit:

ψ1(x) ∼ (γ 2 + sinh2 u)1/4(cosh u)a−b

× (sinh u)a+b−c+ 1
2 F(a, a − c + 1; a + b − c + 1;−sinh2 u) (10)

ψ2(x) ∼ (γ 2 + sinh2 u)1/4(cosh u)a−b

× (sinh u)c−a−b+ 1
2 F(1 − b, c − b; c − a − b + 1;−sinh2 u) (11)

where a, b and c have to satisfy the following relations:

c = 1 ± µ a + b − c = ±(
λ − 1

2

)
a − b = ±[(

s + 1
2

)2 − (γ 2 − 1)µ2]1/2 ≡ ±ω.

(12)

With conditions (12) the two independent solutions can be written as

ψ1(x) ∼ (γ 2 + sinh2 u)1/4(cosh u)±ω(sinh u)λ

×F
(

1
2

(
µ + λ + 1

2 ± ω
)
, 1

2

(−µ + λ + 1
2 ± ω

); λ + 1
2 ;−sinh2 u

)
(13)

ψ2(x) ∼ (γ 2 + sinh2 u)1/4(cosh u)±ω(sinh u)1−λ

×F
(

1
2

(−µ − λ + 3
2 ± ω

)
, 1

2

(
µ − λ + 3

2 ± ω
); 3

2 − λ;−sinh2 u
)
. (14)

Note that the same two functions are obtained irrespective of the signs chosen in the first
two equations in (12), while the sign of ω remains to be determined from the normalizability
conditions of the wavefunctions.

Up to this point the functions (13) and (14) supply the general solutions for the energy
eigenvalue E = −γ 4µ2. In order to obtain solutions belonging to discrete energy eigenvalues
one has to set one of the first two arguments of the hypergeometric functions to the non-positive
integer value −n, reducing them to Jacobi polynomials [37]. We find that in contrast with the
Hermitian case, normalizable solutions can be obtained in two different ways, corresponding
to the condition

2n + 1 + µnq + q
(
λ − 1

2

) − ω = 0 (15)

where q = 1 and q = −1 hold for (13) and (14), respectively. In this case the two solutions
can be written in a compact form as

ψnq(x) ∼ (γ 2 + sinh2 u)1/4(cosh u)−2n−1−µnq−q(λ− 1
2 )(sinh u)

1
2 +q(λ− 1

2 )

×P
(q(λ− 1

2 ),−2n−1−µnq−q(λ− 1
2 ))

n (cosh(2u)). (16)

Here n is the principal quantum number labelling the bound states and q is the quasi-parity
q = ±1 [19]. This quantum number characterizes the solutions of PT symmetric potentials,
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but the potential itself does not depend on it. Its name originates from the analysis of the PT
symmetric version of the one-dimensional harmonic oscillator: in the Hermitian limit of this
potential (i.e. for ε → 0) it essentially reduces to the parity quantum number.

We see that the two solutions are distinguished by the q = ±1 quasi-parity quantum
number, similarly to potentials belonging to the shape-invariant class. Actually, the
corresponding solutions of the PT symmetric generalized Pöschl–Teller potential [14] can be
obtained by setting γ = 1. It is also obvious that normalizability requires Re(µnq) > 0.

In order to obtain an explicit expression for µnq one has to combine (15) with (12) and to
solve a quadratic algebraic equation for µ = µnq :

µnq = 1

γ 2


−

(
2n + 1 + q

(
λ − 1

2

))

+

[
γ 2

(
s +

1

2

)2

+ (1 − γ 2)

(
2n + 1 + q

(
λ − 1

2

))2
]1/2


 . (17)

This expression recovers the corresponding formula for the Hermitian generalized Ginocchio
potential for q = 1.

Similarly to the case of the Hermitian version of the generalized Ginocchio potential the
energy eigenvalues are written as Enq = −γ 4µ2

nq , and they are independent of ε. Actually,
we find that for the q = 1 choice the expressions for the Hermitian problem are recovered
formally. However, the forthcoming analysis will show that despite the similar form, some
quantities can be chosen complex for the PT symmetric case. Before going on we may note
that µnq , and consequently Enq , depends on the 2n + 1 + q

(
λ − 1

2

)
combination, and this leads

to a degeneracy between levels with q = 1 and q = −1 whenever λ is a real half-integer
number. Furthermore, for λ = 1

2 states with opposite quasi-parity and with the same n become
degenerate: in fact, this is the point where the spontaneous breakdown of PT symmetry sets
in if the λ parameter is continued to complex values allowed by (9).

Let us now analyse the conditions for having real and complex energy eigenvalues Enq ,
which corresponds to inspecting the nature of µnq (17) in terms of the allowed values of s and
λ displayed in (9). These also have to be combined with the condition Re(µnq) > 0 which
guarantees normalisability of the solutions (16). The key element of the analysis is the term
containing the square root in (17), so it is useful to inspect separately the cases when it is real,
imaginary or complex, which corresponds to A � 0, A < 0 and complex A, where

A ≡ γ 2
(
s + 1

2

)2
+ (1 − γ 2)

(
2n + 1 + q

(
λ − 1

2

))2
. (18)

We restrict our analysis to γ 2 > 1: the alternative choice, γ 2 < 1, would change the nature of
the r(u) function in (2). We can note that λ occurs everywhere in the combination q

(
λ − 1

2

)
,

so when λ is real, we can assume that λ � 1
2 , because the λ � 1

2 cases can be obtained simply
by switching q = +1 to q = −1. Also, when λ = 1

2 + il, it is enough to assume l > 0 for the
same reason.

• A � 0. This can happen only if λ is real, while from A � 0 in (18) and γ 2 > 1 it follows
that s also has to be real. Inspecting the allowed values of n for various parameter domains
we find the following. Normalizable states can be obtained for µnq in (17) when

−1

2

(
1 + q

(
λ − 1

2

)
+

(
γ 2

γ 2 − 1

)1/2 ∣∣∣∣s +
1

2

∣∣∣∣
)

� n � −1

2

(
1 + q

(
λ − 1

2

)
−

∣∣∣∣s +
1

2

∣∣∣∣
)

(19)
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holds. If the upper boundary of this domain is negative, then there are no normalizable
solutions. This depends on the relative magnitude of s and λ.

• A < 0. Here again λ has to be real, while s can take both real and complex values allowed
in (9). The Re(µnq) > 0 condition now reduces to 2n + 1 + q

(
λ − 1

2

)
< 0, which has to

be combined with A < 0. The resulting condition is then

n � −1

2

(
1 + q

(
λ − 1

2

)
+

(
γ 2

γ 2 − 1

)1/2 ∣∣∣∣s +
1

2

∣∣∣∣
)

(20)

for real values of s and

n � − 1
2

(
1 + q

(
λ − 1

2

))
(21)

for s = − 1
2 + iσ . Note that these conditions can be met only for q = −1 if λ is large

enough (and positive, as we assumed before).
• A is complex. For this λ = 1

2 + il is required, while s can be both real and s = − 1
2 + iσ .

This situation corresponds to the spontaneous breakdown of PT symmetry, and the
energy eigenvalues appear in complex conjugated pairs due to (µnq)

∗ = µn−q , which
leads to (Enq)

∗ = En−q . At the same time the Re(µnq) > 0 condition turns out to be
the same for q = +1 and −1, in accordance with the expectation that the number of
normalizable states has to be the same for both quasi-parities. The detailed analysis is
more complicated for complex values of A (and λ) than for real A, so we can resort only
to numerical calculations in this respect. The outcome depends on the relative magnitude
of

∣∣s + 1
2

∣∣ (which is |σ | for complex values of s) and l.

We can now address the question whether with the tuning of the potential parameters the
spontaneous breakdown of PT symmetry (i.e. the appearance of complex conjugate pairs of
eigenvalues) happens at the same time for all the bound states as in the case of shape-invariant
potentials [20], or gradually, as for some non-shape-invariant potentials, such as the PT
symmetric square well [21]. From the analysis above we find that when this mechanism is
realized via setting λ to the complex value λ = 1

2 + il, then all the energy eigenvalues turn
complex at the same time. The spectrum can also be changed to complex by tuning s from real
to imaginary values and keeping λ real. Since s is contained in the formulae in the combination
s(s + 1) or

(
s + 1

2

)2 = s(s + 1) + 1
4 which is always real, this possibility is more limited. In

this case again all the energy eigenvalues turn complex at the same time, but the character
of the potential also changes, as its leading term in (1) changes sign. In the Hermitian setting
this would correspond to replacing the potential well with a barrier, which obviously changes
the nature of the problem. Although in the PT symmetric version of (1) the situation is less
transparent, the complexification of the spectrum via tuning s to complex values and keeping
λ real is clearly different from the situation when s is kept real and the spontaneous breakdown
of PT symmetry is induced by tuning λ to complex values.

In figures 2–4 the real and imaginary components of (1) are plotted for fixed values of
ε, γ and s and for various values of λ corresponding to unbroken and spontaneously broken
PT symmetry. The position of the energy eigenvalues is also indicated.

A similar analysis can be performed for γ 2 < 1 too. In this case the s = − 1
2 + iσ choice

plays a more important role, but otherwise the results are qualitatively the same. Note that in
this case r(u) in (2) changes, and this also modifies the nature of the potential.

Before closing this section we mention briefly some aspects of the one-dimensional version
of the Ginocchio potential [26] which is obtained from (1) by the λ = 0 or 1 substitution.
This limit is analogous to the one-dimensional version of the harmonic oscillator, which is
also obtained from the radial harmonic oscillator after cancelling the singular centrifugal term,
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Figure 2. The real (left panel) and imaginary (right panel) components of the potential (1)
for ε = 0.3, γ = 1.75, s = 8.1 and λ = 1.25 (solid line) and its supersymmetric partners
V

(+1)
+ (x) (dashed line) and V

(−1)
+ (x) (dotted line) in (24). Normalizable states of (1) are found

at E0 +1 = −171.313, E1 +1 = −106.160, E2 +1 = −46.679, E3 +1 = −5.666; E0 −1 =
−218.913, E1 −1 = −154.978, E2 −1 = −90.379, E3 −1 = −33.993 and E4 −1 = −1.061.
The spectrum of V

(q)
+ (x) is the same, with the exception of the E0 q level, which is missing from

its spectrum.
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Figure 3. The same as figure 2 with λ = 0.5. Normalizable states are found at E0 +1 = E0 −1 =
−195.477, E1 +1 = E1 −1 = −130.419, E2 +1 = E2 −1 = −67.675 and E3 +1 = E3 −1 =
−17.640. The supersymmetric partners V

(+1)
+ (x) and V

(−1)
+ (x) coincide in this case.

allowing the extension of the potential to the full x-axis. Another similarity between the
two systems is that the two choices of λ correspond to the even and odd solutions, and this
can clearly be seen from the structure of the bound-state solutions (6), in which the Jacobi
polynomial reduces to an even and an odd Gegenbauer polynomial for λ = 0 and 1, respectively
[37]. Losing the λ parameter means that in the case of the PT symmetric one-dimensional
Ginocchio potential the spontaneous breakdown of PT symmetry cannot be implemented



7620 G Lévai et al
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Figure 4. The same as figure 2 with λ = 0.5 + 1.25i corresponding to spontaneously broken PT
symmetry. Normalizable states are found at E0 +1 = (E0 −1)

∗ = −196.494 + i 40.038, E1 +1 =
(E1 −1)

∗ = −130.023 + i 41.130, E2 +1 = (E2 −1)
∗ = −65.367 + i 37.105 and E3 +1 =

(E3 −1)
∗ = −11.833 + i 25.161. The supersymmetric partners V

(+1)
+ (x) and V

(−1)
+ (x) cease

to be PT symmetric in this case.

as in the general case. It is also interesting to note that the quasi-parity quantum number
occurs only in the combination q

(
λ − 1

2

)
, which means that the q = +1, λ = 0 combination

is equivalent to q = −1, λ = 1, and q = +1, λ = 1 is equivalent to q = −1, λ = 0,
and this reflects the relation of the quasi-parity quantum number to ordinary parity, similarly
to the case of the one-dimensional harmonic oscillator [19]. It is also worthwhile noting
that the Hermitian version of the one-dimensional Ginocchio potential possesses a number of
complex-energy solutions (resonances) [26], and since the energy eigenvalues are not sensitive
to the ε parameter appearing in the complex coordinate shift in (8), these remain unchanged
after the PT symmetrization of the potential. However, these are unbound solutions, so their
character is different from that of the (normalizable) complex-energy solutions which appear
when the PT symmetry is spontaneously broken.

4. Supersymmetric aspects of the PT symmetric generalized Ginocchio potential

According to [23] the supersymmetric partner of a PT symmetric potential depends on the
quasi-parity q, and thus corresponds to two distinct potentials. For this, the partner potentials
have to be constructed by using a q-dependent factorization energy such that [23]

V
(q)
± (x) = U

(q)
± (x) + ε(q) ≡ [W(q)(x)]2 ± dW(q)

dx
+ ε(q) (22)

where ε(q) = E
(q)

0,− is the ground-state energy of the ‘bosonic’ potential, which due to this

construction is independent of q, i.e. V (q)
− (x) = V (x). The superpotential W(q)(x) is expressed

in terms of the ground-state (n = 0) wavefunction of V (x) (1)

W(q)(x) = − d

dx
ln ψ0q(x)

= γ 2(γ 2 − 1) sinh u

2(γ 2 + sinh2 u)3/2
+

γ 2µ0q sinh u

(γ 2 + sinh2 u)1/2
− γ 2

(
1
2 + q

(
λ − 1

2

))
(γ 2 + sinh2 u)1/2 sinh u

(23)
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and it clearly depends on q explicitly (in the third term) and implicitly via µ0q (in the second
term). The ‘fermionic’ partner potentials of the generalized Ginocchio potential contain the
same terms as (1), but the coupling coefficients are different, and pick up q-dependence, as
expected [23]:

V
(q)

+ (x) = − Aq

γ 2 + sinh2 u
+ Bq

coth2 u

γ 2 + sinh2 u
+

Cq

(γ 2 + sinh2 u)2
− 7γ 6(γ 2 − 1)2

4(γ 2 + sinh2 u)3
(24)

Aq = γ 4[s(s + 1) + γ 2 − 2 − 2γ 2µ0q − q(2λ − 1)] (25)

Bq = γ 4[λ(λ − 1) + 1 + q(2λ − 1)] (26)

Cq = γ 4(γ 2 − 1)

(
11γ 2 − 9

4
− 2γ 2µ0q − q(2λ − 1)

)
. (27)

These partner potentials are PT symmetric if µ0q (and thus λ too) are real, which, under
rather general conditions, coincides with the requirement of the (unbroken) PT symmetry of
(1) itself. This was the case for some PT symmetric shape-invariant potentials too [22, 23].
When λ = 1

2 + il, which happens when the PT symmetry of (1) is spontaneously broken, (24)
ceases to bePT symmetric, which is again a result similar to those obtained for shape-invariant
potentials [22, 23].

Figures 2–4 display also the ‘fermionic’ partners of the respective ‘bosonic’ potentials.
Due to the SUSYQM construction the energy eigenvalues of the ‘fermionic’ partners are the
same with the exception that the levels with n = 0 and q = ±1 are missing from the spectrum
of V

(±1)
+ (x). The example in figure 4 corresponds to the spontaneous breakdown of the PT

symmetry of the ‘bosonic’ potential, and thus the PT symmetry of the ‘fermionic’ potentials is
manifestly broken. This is indicated by the fact that the real and imaginary components of the
potential cease to have definite parity under space reflection. However, the two ‘fermionic’
potentials are the PT transforms of each other: V

(+1)
+ (x) = [

V
(−1)

+ (−x)
]∗

. Note that for
λ = 1

2 , i.e. for the point of the spontaneous breakdown of PT symmetry, the two ‘fermionic’
partners with q = +1 and q = −1 coincide.

5. Summary and conclusions

We analysed a Natanzon-class potential, the generalized Ginocchio potential, in a PT
symmetric setting in order to explore similarities and differences with the more restricted
shape-invariant potential class. This work was inspired by the fact that up to now the exactly
solvable PT symmetric potentials were almost exclusively members of the shape-invariant
class, and they showed marked differences compared to examples outside this class, e.g.
those which have been solved numerically or had quasi-exactly solvable character. Our
analysis showed that the PT symmetric generalized Ginocchio potential shares all the specific
properties of shape-invariant potentials. In particular, its states can also be characterized
by the quasi-parity quantum number, and the spontaneous breakdown of its PT symmetry
takes place suddenly, i.e. by tuning a potential parameter (λ) all its real energy eigenvalues
turn into complex conjugate pairs at the same value of this parameter. These results seem to
originate from the ‘robust’ structure of the normalizable solutions of Natanzon-class potentials,
which allows the implementation of PT symmetry to these technically non-trivial problems.
Another similarity with the shape-invariant potentials is that the PT symmetric generalized
Ginocchio potential has two ‘fermionic’ supersymmetric partners (generated by eliminating
the lowest state of the original ‘bosonic’ potential with quasi-parity q = +1 and −1), and the
partner potentials also possess PT symmetry as long as the PT symmetry of the ‘bosonic’
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potential is unbroken, but they cease to be PT symmetric when the PT symmetry of the
‘bosonic’ potential is spontaneously broken. This seems to indicate that the properties thought
to be specific to PT symmetric shape-invariant potentials might be valid for the much larger
Natanzon potential class too, and perhaps also beyond that. Further studies should be made
to check the validity of this conjecture.
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[14] Lévai G, Cannata F and Ventura A 2002 J. Phys. A: Math. Gen. 35 5041
[15] Znojil M 1999 Phys. Lett. A 264 108
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